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ON RESONANCE EXTRACTION AND WAVEFORM FITTING
FOR TRANSIENT DATA; PRONY'S METHOD

INTRODUCTION

The estimation of the resonances (natural frequencies) of a system, from
observation of a noisy response, is an important problem of frequent occurrence
in practical situations. Usually, the number of observations is considerably
greater than the number of resonances, and the task of utilizing these "extra"
data to reduce the errors of estimation must be accomplished without an exces-
sive amount of computational effort or trial-and-error. Accordingly, the
original exact-fit procedure by Prony has to be generalized to a least-squares
approach. In this manner, the amount of data processing is minimized, with
all the nonlinear processing being concentrated in the solution for the roots
of a polynomial.

The purpose of this report is to develop and explain this least-squares
solution and to show its close connection to linear prediction. The first
section, on Mathematical Details, sets up the problem definition and intro-
duces the terms necessary to interpret recent work by Auton and Van Blaricum [1]
described in the next section. Some important points about the waveform-
fitting technique are explained, and some possible alternative approaches are
mentioned. A more general model is considered in appendix A, and a generaliza-
tion to linear prediction is developed in appendix B, which subsumes forwardprediction, backward prediction, and a weighted linear combination in general.

?1
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MATHEMATICAL DETAILS

IDEAL EXPONENTIAL MODEL

Suppose a sequence {g m) 0 of N points is given exactly by the model*

n n
I Ck exp(akm) CI for 0 5 m -< N-1. (1)k-1 kI

That is, sequence {gm 1  is a sum of n complex exponentials. Without loss
of generality, we presume that all the {Ck } are nonzero for 1 S k 5 n.

Consider the error (in linear prediction) of attempting to represent gm
in terms of its past n values; that is, for n 5 m N-1, consider linear
prediction error (where ao m - cn e e

n n n n
g" I a . -3 1a =- I a* I CSj=j gm-j 1==O gm-j j=O k1 k

n m- n .-j k m-n[7C k .jk  7 -a -, oi n- [P_ n-ka(lJk P-i ICka n Jk
k-1 j=0 kk1

(2)

where we substituted (1) and interchanged summations. Now we choose the n
linear coefficients j}p such that

k - 1- an-1lk - 0 for 1 5 k 5 n. (3)

This requires solution of n linear equations for the n unknowns {j}l,
presuming that the n quantities N }n are known. In fact, the general
solution is

aXj = (-1)j-1 {sum of all possible products of j different u's}

for 1 < j < n; (4a)

*This can be generalized to include terms like Cum + Dmu"'; see appendix A.

2
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that is,

Ol P  I +  P2 + -+ P n

a2 =(PI I~s... ~x~+P~la+IJ2lJ4+.-'+Pn-j n

a= (-1) '1PP2 .-- 1n- (4b)

With this choice of {aj}1, (2) and (3) yield

n
g-j= aj gm-j =0 for n S m 9 N-1, (5a)

or n
gm Y I a j gm-j for n S m_ SN-1, (5b)

': That is, when sequence {gm}- is generated as a sum of n complex exponentials

jaccording to (1), the sequence value gm can be determined exactly as a forward

linear combination of the previous n values, provided that n < m :5 N-i. The

restriction of m to this range is due to the fact that gm is resimed unknown

for m < 0 and for m > N-i; thus only the "valid," or available, data are

employed in (2) and (5b).

It is important to observe that the n linear predictive coefficients {a,} n

in (4b) depend on {Pk}n but are completely independent 
of the values of the I

exponential strengths, or "residues," {Ck)} in (1). Also, if the were

known instead of the ("kPO, then (3) can be solved for the {uk}n as the n roots

of an n-th order polynomial.

A more general approach to linear prediction is developed in appendix B.

It subsumes the forward prediction (given above), backward prediction, and a

weighted linear combination in general.

ACTUAL MEASURED DATA

Now suppose that some arbitrary data sequence {fm}l
"1 has been measured

or is available, and we want to choose the 2n parameters in the exponential

model (1) such that the error of representing data ffm Y6 by this model is

minimized in some sense. Guided by (5b), we first let linearly predicted

value

3
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A n
fm = I a fm- for n 5 m 5 N-i, (6)

j=1 j 
: -

where the linear coefficients {aij are to be selected. In particular, we

define the prediction error sequence (called the equation error in [1])

n
em = fr- f = f - Y a fm- for n i m 9 N-1. (7)

m mm m j=i 1 j -j

This is also called Prony's difference equation. We then define the total
squared prediction error as*

N-1 N- 1f
E B w W m (f - ajfmj) (8)

m=n m mn m j=i

where wm are a set of N-n positive weights. E is called the quadratic

wm n
error in [1].

Minimization of total squared prediction error E by choice of coefficients
{cj}n is accomplished by setting

BE (9)
BE =0 for 1 ks-n.a k

This results in n linear equations in the n unknowns {ak} n  We solve these

equations for the { k that minimize prediction error

We must point out an alternative approach to the minimization of E.
One could instead minimize the Chebyshev error; that is, we could choose the
{aj}n in (7) so as to minimize the quantity

1n

max m rn-i
n~nN f !fm 7- a. f .(10)

n~m-SN-1 m j=l mj

That is, the maximum error in prediction is minimized. Although this approach
yields nonlinear equations in the {0j}n, efficient linear programming techni-

ques exist for this problem. How well this minimax error criterion compares
with the total squared error criterion is not known.

*We are presuming real data sequences here; generalization to complex data is
possible.
4
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n

Given the values for {ak}1 , whether obtained via (9) or (10), we can now

solve (3) for the {1k}j. Some of these latter values may be complex, even

though all the {a In are real for real data {fmNO ; this situation is

treated in [2], p. 380.

Guided now by (1), we next let model data value*

n
=Pk for 0 m 5 N-1. (ii)m kil

Then we define data error sequence (called the true error in [1])

n
em = fm - fm = fm - I Ck pk for 0 m 6 N-1. (12)

k=

In a similar fashion to (8), we also define the total squared data error as

m w kn CkE i W 2= m m " Ck P ) (13)m=0O m m 0=0O k1kk

where N-1 are a set of N positive weights. To minimize total error E
we set

- 0 for 15 n, (14)

ac.

thereby obtaining n linear equations in the n unknowns {C}1.n (The quantities

{uk 1 are already known at this point; see the discussion preceding (11)).

We solve these n equations for the {CjI 1 that minimize E.

An alternative approach to the minimization of E is to minimize the
Chebyshev error; that is, choose the {CkIn in (12) so as to minimize the
quantity

n
max f m " I Ck Pk (15)OfmmN-l k--1

*This presumes that all the roots k are distinct; if on the other hand,

we had, for example, u1 = 42 ' then we need Clu+ C2mii 1 rather than

Cm +

5
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Again, the performance quality of (10) and (15) is not known.

At this point, we have a "fitted" waveform,

n
IC k p for 0 m 5 N-1, (16)

k--1

to the original given data sequence {fm} . However, it should be observed

that the fit was obtained via a two-staqe sequential procedure. Namely, we
first minimized total prediction error E to find the linear coefficients

{a k1 , and from them, solved the polynomial of (3) for its roots {uk}1.

(These latter quantities are called the resonances in [1]). Then, with
these known values for {Uk}, total data error t was minimized, thereby

determining the strengths (residues) {Ck11 of each of the known exponential

components {U}=

Both error definitions, (7)-(8) and (12)-(13), utilize and "fit" the

available data sequence {f }-1, but in two different senses, the first via
linear prediction, and thems~cond via an exponential model. The worst non-
linear data processing encountered in this two-stage procedure is the
solution of an n-th order polynomial, (3),for all its roots {1.k}y. This
sequential procedure will not realize as small an error as direct minimiza-
tion of

NI m - Y c Pk (17)

n { n}.Hwvr hi atrapoc
via simultaneous choice of {Ck} 1 and 11 . However, this latter approach

is highly nonlinear in the {Uk}n , and no direct (nonrecursive) solution is

known. Of course, a gradient search on (17) could be employed, using as
starting values, those obtained above via the two-stage sequential procedure.

6
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SOME RECENT WORK

The source of the following results and comments is the work by Auton
and Van Blaricum (1). The solution for the coefficients faj}? in (9) is

called the reduced or inhomogeneous solution; see [1], vol. I, p. 2-5.
This traditional solution unfortunately tends to zero as the white
(independent) noise component in {fm} -  gets larger. A remedy to this

undesired behavior is furnished by employing instead, the weakest eigen-
vector of the matrix QTQ, where Q is the data matrix formed by arranging

the given data ffm}N "1 in columns in a particular fashion; see (11, vol. I,
p. 2-2. (An equivalent interpretation is that QTQ or Q are approximated by
matrices of lower rank, i.e. singular matrices.) It has been found that
the weakest eigenvector of QQ is less dependent on the absolute noise level
and can furnish more useful values for the resonances {Pk}n than can the
inhomogeneous solution. Physically, the "best" linear pre iction of a noisy
waveform tends to zero, whereas an eigenvector can maintain all its compo-
nents nonzero, regardless of the absolute noise level. At present, the
weakest eigenvector solution is judged to be the best of all iterative and
noniterative methods for estimating the resonances In; see [1], vol. I,
p. 2-28.

J When the number of resonances, n, in (1) is unknown, its determination
or estimation must be made from the available data ffmIN1 If k is the

true (unknown) number of resonances, and n is the hypothesized number,
there are n-k extraneous resonance estimates produced. A maximum likelihood
procedure developed in [I] and applied to the t smallest eigenvalues (for
various values of t) has been found to give reasonable estimates of k. An
alternative approach, employing time reversal of the data sequence, seems
to separate extraneous resonances, but more study is suggested; see [1], vol.I,
p. 3-26.

7
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CONCLUSIONS

The usual problems associated with Prony's method, regarding sensitivity
to noise, have been attributed to dense sampling and bias. If both of these
problems are treated properly and the weakest eigenvector is employed,
Prony's method produces excellent estimates of the resonances, even from data
with high noise levels; see [1], vol. I, p. 4-8.

Studies on some of these still-unanswered questions about alternative
procedures for order selection and resonance estimation will continue.
Certainly, further improvements in the procedures and performance will ensue.
Applications to real measured data have yet to be made, however; see [11,
vol. I, pp. 5-2 and 5-3.

8
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Appendix A

A MORE GENERAL MODEL

Instead of (1) of the main text, suppose that sequence value

n P
g Y-k P 7 k= m~ for 0O5m ;SN-1, (A.1)

where p can be larger or smaller than n. Then for n+p :S m < N-i, consider
linear prediction error

n P
gm j=1 j Im- j= g--

- k k + D1 Dk(i)o -1)

=j [ Y-[k1 Ck Pm y1 k(mn 3)Pk

m n --j + u--i
Y- C k~p * I k I D k i(--j
L3j=1 a~-1 -

.rm n p
k P kk Y.1 a.(m-j)pk3 + j J(m-ni)j k -l (A.2)

k-1 L=0 k =

The quantities in brackets can be made zero for n+p m N-i, by setting
both

n p -n-j
I0 a j + Y- PjPk =0 for 1 Sk 5n (A.3)

and

n Pe (mn- ), = 0 for 1 S k S p. (A.4)

A-i
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This combination constitutes n+p linear equations in the n+p unknowns {a Ijn

and {a iP; a = -1. These equations can be put in the form

n k k p fo (,n~p-
, a P +as .. +app + P1PP11 +...+ pp 0 for 1 S k ;5 n,

' (A.5)

alp ~p- +.+ a1 npP + pl(n+l)pP- ... +. (n~p) 0 for 1 S k ;5 p.

(A.6)

So sequence value g can be determined exactly as a linear combination of n
its previous n+p values, for n+p < m <_ N-I. Notice that coefficients {a.)

and { depend on {k}q (where q = max(n,p)), but not on strengths {Ck}

or {Dk} . See also [3], pp. 174-175.

A-2
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Appendix B

EIGENVECTOR GENERALIZATION OF LINEAR PREDICTION

IDEAL MODEL

The starting point is again (1) of the main text. We now generalize (2)
of the main text to the form

n

. O a g- for n r m S N-1, (B.1)

J=•

where all the {ag}" are arbitrary for the moment. It follows, from substitu-
tion ofT1) of t e main text in (B-i), that

n n .- n A n~

nn

e m = 7. aj - C k 1 = Ck Pk . jj=o k--1 " k -1 J=o

rnm-n 1 -
= Ck Ok Y- aj Ijk for n S m S N-1. (B.2)

k1l jO

Now let us set

n n

YO a ak ok+" "  -1 Pk + an =0 for I S k S n, (B.3)

by choice of {a'. 0 since there are only n equations in JB.3), but n+l
unknowns, we will not get a unique solution for the {a_}n unless we restrict
them somehow. Also, we must disallow the zero solution.

Observe that if we had used only n coefficients {mj}8- in (8.1), we
would have obtained, instead of (B.3), n equations in n unknowns. However,
the only solution to these equations is the zero solution aj = 0 for all j,
which is useless.

Before we consider the restriction on {}O'ji observe that substituting
(B.3) in (B.2) yields

B-1
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n

e - a 0 for n < m < N-1. (B.4)em =0 jgm-j=

That is, we can find an infinite number of linear combinations of n+l adja-
cent values of sequence g m}N± I generated via (1) of the main text,mO0
which are identically zero for all possible locations of the (n+1)-long
average within the record of length N.

• • n

Now to get back to the solution of (B.3) for the coefficients {a 1} , we
observe that the linear predictive approach considered in (2) et seq.
of the main text amounts to choosing aO = -1; this results in a unique
solution for the n linear equations (B.3) in the remaining n unknowns fa
and is called forward prediction by virtue of form (5b) of the main tex.'
An obvious alternative would be to select an = -1, in which case (B.3) and
(B.4) would yield a unique solution for {a }n-1, and

g = gm +' ".-+ gm-n+1 for n 6 m I N-i. (8.5)

That is, we are doing backward linear prediction to obtain the sequence
values. But observe that both of these cases are specializations of the
linear constraint

cTA 1 (B.6)
n

on the coefficients {ail where

Co g" O

cI  a1

C = 1 1 (8.7)

cn n

are column matrices. Constraint (B.6) prevents the zero solution, and when
combined with (B.3), gives a unique solution for A. We can normalize the
matrix of constants, C, such that

cTc = 1 (or K if desired), (B.8)

without loss of generality. Forward or backward prediction, respectively, cor-
responds to choosing all the {c 1}) equal to zero except for edge elements
C. or cn , respectively, equal to -1. So, generally, we can realize the linear
combination.

* B-2
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n
aj g 0 for n 6 m I N-1, (B.9)

j=O g-

subject to {fj1 satisfying the linear constraint (B.6), which guarantees a
nonzero solution. C is any vector satisfying (B.8).

ACTUAL MEASURED DATA

N-I
Now consider that measured data {fm} " are available. Instead of

linear prediction (6) of the main text, consider the more general linear
combination (as in (B.1))

n

dm =07 a. fm- for n S m S N-i, (B.1O)
j=0 J m-

where set fail is not yet specified. Define error and data matrices

d f f f

D d , F f . (N-n)x(n+1). (B.11)

dN-1 fN-I f N-i-n

Then (B.1O) can be expressed as

D = FA (B.12)

where we used (B.7).

Now we want to minimize the total quadratic error of (B.10), namely,

N-1
I d2 = DTD = ATFTFA (B.13)

m1=n

by selection of A, but subject to linear constraint (B.6) on A, which guar-
antees a nonzero solution. C is an arbitrary, yet-unspecified matrix.
Accordingly, we use a Lagrange multiplier 2X and look for an extremum of

ATS A - 2x CTA, (B.14)

B-3
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where we have defined

S =T (n+l)x(n+1) matrix. (B.15)

S is easily seen to be a nonnegative definite matrix; it generally has full
rank when N > 2n. Completing the square in (B.14), we rewrite it as

T T(A -AS C) S(A -S C) - A C S C. (B.16)

The extremum is then obviously realized for coefficient matrix

A1 xS'IC. (B.17)

To evaluate X, we have to satisfy the linear constraint (B.6):

.Ic- 1 (B.18)
ACS C1,C

The best coefficient set is then, from (B.17),

A - T I (B.19)
CS C

(Thus the best coefficients are proportional to the first column of S for

forward linear prediction, or to the last column for backward linear prediction.)
The corresponding minimum value of the total quadratic error, (B.13), is

cTs- ss- c1

A TSA = -- . (B.20)
00 (C S C) Cs C

(This denominator reduces to the 0,0 eliment of S- 1 for forward linear
prediction, or to the n,n element of S- for backward linear prediction.)

But this result, (B.20), obviously depends on the particular values
assigned to the constraint vector C in (8.6). The question then arises as
to what constraint vector would yield further reduction of error (B.20). To
determine this, let matrix S, defined in (B.15), have eigenvalue matrix

A0 A

A- 0 < . (B.21)

0
L Nn j

B-4
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and modal (eigenvector) matrix

E [ 0  e1 -'"en (B.22)

Then

SE EA (B.23)

or

Sek = Ak ek for 0 < k < n. (B.24)

By taking the inverse of (B.23), and pre- and post-multiplying by E, we
obtain

S1 E = EA1  (B.25)

or

S- ek= ek for 0 5 k S n(,k k k(B.26)

which we will need below. The inverse matrix has the same eigenvectors but
the inverse eigenvalues of S.

Now any n+1 column matrix can be expressed in terms of the eigenvectors
of S. In particular, suppose we let

n
C = I bk ek . (B.27)

k=0

Recalling normalization (B.8), we have the constraint on the {bk} :

n T n 2
Y bbk e e. = 7 b 1, (B.28)

k,£=O k k k k0 K

since the eigenvectors {ek}O are orthonormal. If we substitute (B.27) in
(B.20), the denominator is given by

n T n T
Cs = bYE = bkb eT e

k,k0 k k,1=0 k.ekA k

n 1
= k bkb Xp 6k.= . bk/Xk, (B.29)

k,k-O=0 A k k=70kk

B-5
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where we employed (B.26) and the orthonormality of the eigenvectors. Now
since we want to minimize (B.20), we must maximize (B.29), but subject to
(B.28). Obviously the best choice of {bk}8 is given by

b0 ±1, bk = 0 for 1 S k 5 n, (B.30)

where X is the smallest eigenvalue of S; see (B.21). Thus

main{T } 0 (.1
Minimum total quadratic error = oA'SAo= X0  (B.31)

which is the smallest eigenvalue of S defined in (B.15).

Now we can employ result (B.30) in (B.27) and (B.19) to find the best
coefficient set A0. We have C = + e0, and (B.19) becomes

±S e°  _oeo

A0 = - - 0' (B.32)

e°S eo  e TA 1 e0 0 0 0

where we used (B.26). Thus both the constraint vector and the best linear
weighting of the data in (B.10) are equal to the weakest eigenvector of the
matrix S = FTF, where F is the data matrix defined in (B.11).

We can now return to (B.3) to solve for the {Pk)?, where we use the
components of the weakest eigenvector of S for the {aj}n; that is, we use

al eo01 (B331 = ± .~ (B. 33)

;n. On

What we have done is to find the best linear constraint such that the total
quadratic error (8.13) is minimized. The end result is the same as if we
had minimized (8.13) directly, subject only to constraint

ATA= 2 =1. (B.34)
; J=()

This latter interpretation corresponds to the best A vector in (n+1)-space,

with its tip on the unit sphere, that minimizes the total quadratic error.

B-6
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CNN, MAT-08T, -08T2, -08T24, SP-20, ASW-122 5
DIA, DT-2C 1
NAV SURFACE WEAPONS CENTER, WHITE OAK LAB. 1
DWTNSRDC ANNA 1
DWTNSRDC BETH I
NRL I
NRL, USRD 1
NRL, AESD I
NORDA (Dr. R. Goodman, 110) 2
USOC, Code 241 1
Acoustics Research Branch, Code 240 1
OCEANAV 1
NAVOCEANO, Code 02 1
NAVELECSYSCOM, ELEX 03 1
NAVSEASYSCOM, SEA-003 1
NASC, AIR-610 I

NAVAIRDEVC EN 1
NAVAIRDEVCEN, Code 2052 1
NOSC 1
NOSC, Library, Code 6565 1
NAVWPNSCEN 1
NCSC 1
C IVENGRLAB 1
NAVSURFWPNCEN 1
NUWES, KEYPORT 1
NUWES, San Diego Detachment 1
FLTASWTRACENPAC Tactical Library 1
NAVPGSCOL 1
NAVTRAEQUIPCENT, Technical Library 1
APL/UW, SEATTLE 1
ARL/PENN STATE, STATE COLLEGE 1
CENTER FOR NAVAL ANALYSES (ACQUISITION UNIT) I
DTIC 12
DARPA 1
NOAA/ERL 1
NATIONAL RESEARCH COUNCIL I
WEAPON SYSTEM EVALUATION GROUP 1
WOODS HOLE OCEANOGRAPHIC INSTITUTION 1
ENGINEERING SOCIETIES LIB, UNITED ENGRG CTR 1
NATIONAL INSTITUTE OF HEALTH 1
ARL, UNIV OF TEXAS I
MARINE PHYSICAL LAB, SCRIPPS I




